c++11 auto 与 decltype 详解

2020-08-07T03:52:51
关注公众号【好便宜】( ID:haopianyi222 ),领红包啦~
阿里云,国内最大的云服务商,注册就送数千元优惠券:https://t.cn/AiQe5A0g
腾讯云,良心云,价格优惠: https://t.cn/AieHwwKl
搬瓦工,CN2 GIA 优质线路,搭梯子、海外建站推荐: https://t.cn/AieHwfX9

一. auto简介

编程时候常常需要把表达式的值付给变量,需要在声明变量的时候清楚的知道变量是什么类型。然而做到这一点并非那么容易(特别是模板中),有时候根本做不到。为了解决这个问题,C++11新标准就引入了auto类型说明符,用它就能让编译器替我们去分析表达式所属的类型。和原来那些只对应某种特定的类型说明符(例如 int)不同。auto 让编译器通过初始值来进行类型推演。从而获得定义变量的类型,所以说 auto 定义的变量必须有初始值。

 

[cpp] view plain copy

 

  1. //由val_1 和val_2相加的结果可以推断出item的类型  
  2. auto item = val_1 + val_2;//item 类型初始化为val_1 + val_2相加后的类型,值为val_1+val_2相加的值。  


 

 

    这里的 item 的类型是编译器在编译的过程中通过val_1和val_2的类型相加后推算出来的。假如是val_1(int) + val_2(double),那么item的类型就是double.

            使用auto也能在一个语句中声明多个变量,因为一个声明雨具只能有一个基本数据类型,所以该雨具所有变量的初始基本数据类型都必须是一样的。在这里一定要区别数据类型和类型修饰符!!

 

[cpp] view plain copy

 

  1. int i = 3;  
  2. auto a = i,&b = i,*c = &i;//正确: a初始化为i的副本,b初始化为i的引用,c为i的指针.  
  3. auto sz = 0, pi = 3.14;//错误,两个变量的类型不一样。  


            编译器推断出来的auto类型有时候会跟初始值的类型并不完全一样,编译器会适当的改变结果类型使得其更符合初始化规则。

 

            首先,正如我们熟知的,使用引用其实是使用引用的对象,特别当引用被用作初始值的时候,真正参与初始化的其实是引用对象的值。此时编译器以引用对象的类型作为auto的类型:

 

[cpp] view plain copy

 

  1. int i = 0 ,&r = i;//定义一个整数i,并且定义r为i的应用.  
  2. auto a = r; //这里的a为为一个整数,其值跟此时的i一样.  


            由此可以看出auto会忽略引用,其次,auto一般会忽略掉顶层const,但底层const会被保留下来,比如当初始值是一个指向常量的指针时:

 

 

[cpp] view plain copy

 

  1. int i = 0;  
  2. const int ci = i, &cr = ci;  //ci 为整数常量,cr 为整数常量引用   
  3. auto a = ci;     // a 为一个整数, 顶层const被忽略  
  4. auto b = cr;     // b 为一个整数,顶层const被忽略  
  5. auto c = &ci;    // c 为一个整数指针.  
  6. auto d = &cr;    // d 为一个指向整数常量的指针(对常量对象区地址是那么const会变成底层const)  


            如果你希望推断出auto类型是一个顶层的const,需要明确指出:

 

 

[cpp] view plain copy

 

  1. const auto f = ci;  


            还可以将引用的类型设为auto,此时原来的初始化规则仍然适用(用于引用声明的const都是底层const):

 

 

[cpp] view plain copy

 

  1. auto &g = ci; //g是一个整数常量引用,绑定到ci。  
  2. auto &h = 42; // 错误:非常量引用的初始值必须为左值。  
  3. const auto &j = 42; //正确:常量引用可以绑定到字面值。   


 

 

二. decltype简介

 

            有的时候我们还会遇到这种情况,我们希望从表达式中推断出要定义变量的类型,但却不想用表达式的值去初始化变量。还有可能是函数的返回类型为某表达式的的值类型。在这些时候auto显得就无力了,所以C++11又引入了第二种类型说明符decltype,它的作用是选择并返回操作数的数据类型。在此过程中,编译器只是分析表达式并得到它的类型,却不进行实际的计算表达式的值。

 

[cpp] view plain copy

 

  1. decltype(f()) sum = x;// sum的类型就是函数f的返回值类型。  

          

 

            在这里编译器并不实际调用f函数,而是分析f函数的返回值作为sum的定义类型。

            基本上decltype的作用和auto很相似,就不一一列举了。对于decltype还有一个用途就是在c++11引入的后置返回类型。

 

三. decltype 和 auto 区别

 

            decltype在处理顶层const和引用的方式与auto有些许不同,如果decltype使用的表达式是一个变量,则decltype返回该变量的类型(包括顶层const和引用在内)。

 

[cpp] view plain copy

 

  1. const int ci = 42, &cj = ci;  
  2.   
  3. decltype(ci) x = 0;   // x 类型为const int  
  4. auto z = ci;          // z 类型为int  
  5.   
  6. decltype(cj) y = x;   // y 类型为const int&  
  7. auto h = cj;          // h 类型为int  


           decltype还有一些值得注意的地方,我们先来看看下面这段代码:

 

 

[cpp] view plain copy

 

  1. int i = 42, *p = &i, &r = i;  
  2.   
  3. decltype(i) x1 = 0;       //因为 i 为 int ,所以 x1 为int  
  4. auto x2 = i;              //因为 i 为 int ,所以 x2 为int  
  5.   
  6. decltype(r) y1 = i;       //因为 r 为 int& ,所以 y1 为int&  
  7. auto y2 = r;              //因为 r 为 int& ,但auto会忽略引用,所以 y2 为int  
  8.   
  9. decltype(r + 0) z1 = 0;   //因为 r + 0 为 int ,所以 z1 为int,  
  10. auto z2 = r + 0;          //因为 r + 0 为 int ,所以 z2 为int,  
  11.   
  12. decltype(*p) h1 = i;      //这里 h1 是int&, 原因后面讲  
  13. auto h2 = *p;             // h2 为 int.  


           如果表达式的内容是解引用操作,则decltype将得到引用类型。正如我们所熟悉的那样,解引用指针可以得到指针所指对象,而且还可以给这个对象赋值。因此decltype(*p)的结果类型就是int&.

 

           decltype和auto还有一处重要的区别是,decltype的结果类型与表达形式密切相关。有一种情况需要特别注意:对于decltype 所用表达式来说,如果变量名加上一对括号,则得到的类型与不加上括号的时候可能不同。如果decltype使用的是一个不加括号的变量,那么得到的结果就是这个变量的类型。但是如果给这个变量加上一个或多层括号,那么编译器会把这个变量当作一个表达式看待,变量是一个可以作为左值的特殊表达式,所以这样的decltype就会返回引用类型:

 

[cpp] view plain copy

 

  1. int i = 42;  
  2.   
  3. //decltype(i)   int  类型  
  4. //decltype((i)) int& 类型  

  这里再指出一个需要注意的地方就是 = 赋值运算符返回的是左值的引用。换句话意思就是说 decltype(i = b)  返回类型为 i 类型的引用。仔细看下面这段代码:

 

[cpp] view plain copy

  1. int main()  
  2. {  
  3.     int i = 42;  
  4.   
  5.     decltype(i = 41) x = i;  
  6.   
  7.     auto y = i;  
  8.   
  9.     auto& z = i;  
  10.   
  11.     printf("i x y z 此时为: %d %d %d %d\n", i,x,y,z);  
  12.   
  13.     i--;  
  14.   
  15.     printf("i x y z 此时为: %d %d %d %d\n", i, x, y, z);  
  16.   
  17.     x--;  
  18.   
  19.     printf("i x y z 此时为: %d %d %d %d\n", i, x, y, z);  
  20.   
  21.     y--;  
  22.   
  23.     printf("i x y z 此时为: %d %d %d %d\n", i, x, y, z);  
  24.   
  25.     z--;  
  26.   
  27.     printf("i x y z 此时为: %d %d %d %d\n", i, x, y, z);  
  28.   
  29.     return 0;  
  30. }  

运行结果为:

i x y z 此时为: 42 42 42 42
i x y z 此时为: 41 41 42 41
i x y z 此时为: 40 40 42 40
i x y z 此时为: 40 40 41 40
i x y z 此时为: 39 39 41 39   
           由上面的代码和运行结果可以看出来,1.decltype(i = 41)中的赋值语句并没有真正的运行。2. decltype(i = 41)返回的其实是int&,也就是说x 其实是 i 的引用。

了解了auto 和 decltype后,以后在使用的过程中一定要分清两者的区别,防止在定义的时候产生const 与非const 以及引用 非引用 的差别!!

扫一扫关注公众号添加购物返利助手,领红包
当前页面是本站的「Baidu MIP」版。发表评论请点击:完整版 »
因本文不是用Markdown格式的编辑器书写的,转换的页面可能不符合MIP标准。